Archive by Author

Analysis of Richard III’s DNA to Create Complete Genome Sequence

Researchers in England are planning to sequence the entire genome of Richard III by extracting the DNA from his bone material.

Extracting ancient DNA is difficult. Dr. Turi King (Department of Genetics at the University of Leicester) will lead the project. She said it was invariably fragmentary, and it was a question of piecing together and overlaying fragments to complete a jigsaw. King will be working with Professor Michael Hofreiter in the ancient DNA laboratory at Potsdam University. The complete genome sequence will be placed online in an archive available to historians, scientists and the public, although Ibsen’s will not be published.

Richard III will be the first known historical figure to have his genes studied in this way; scientists have previously sequenced the genomes of Oetzi the Iceman, a number of Neanderthals, and most recently a hunter-gatherer from Spain.

The £100,000 ($164,000 / €120,000) cost of the project, which is expected to take at least a year, is being funded by the Wellcome Trust, the Leverhulme Trust and the geneticist Professor Sir Alec Jeffreys.

Transcriptome Sequencing In Translational Oncology Research

m4s0n501

By using novel microfluidic tools, a team of researchers at Indiana University School of Medicine uncovered an unexpected ability of cancer cells to navigate and exit microscopic mazes along the shortest path. To explain this behavior, they propose a novel mechanism that guides cancer cell migration.

Find out how they have harnessed RNA-seq on tumor tissues to reveal efficacious drug targets and implement rational drug combinations in triple-negative breast cancer. Further, ongoing work on how RNA-seq is being used for biomarker discovery in retrospective cancer clinical trials will also be presented.

Genetic Differences Between “Identical” Twins Discovered

A multidisciplinary team in the Eurofins flagship Genomics laboratory in Ebersberg, Germany, has successfully completed a research project to genetically discriminate “identical” monozygotic twins.

So far there have been only theoretical considerations against the experimental finding and dogma that monozygotic twins are genetically fully identical. Statistically, around 6 of 1,000 males are identical twins. Up to now, forensic DNA fingerprinting testing could not be used in crime or paternity cases involving identical twins, as there was no possibility of genetically discriminating between them. Such cases are regularly discussed in the World’s press, including murder, child custody and heritage cases. Forensic laboratories around the world had accepted these analytical restrictions, but Eurofins scientists wanted to push these limits of DNA testing. They used the unique combination of leading forensics and genomics labs available at Eurofins to reach this milestone.

Technically, the scientists applied ultra-deep next generation sequencing and associated bioinformatics techniques. They sequenced DNA from sperm samples of two twins and from a blood sample of the child of one twin. Bioinformatics analysis revealed five mutations, so called Single Nucleotide Polymorphisms (SNPs) present in the twin father and the child, but not in the twin uncle. The SNPs were confirmed by classical Sanger sequencing. The results give experimental evidence for the hypothesis that rare mutations will occur early after or before the human blastocyst has split into two, the origin of twins, and that such mutations will be carried on into somatic tissue and the germ line.

1-s2.0-S1872497313002275-gr1

The dataset in this project equaled a total of 241 human genomes, resulting from up to 94 fold genomic coverage of the involved three individuals.

The peer-reviewed study “Finding the needle in the haystack: Differentiating “identical” twins in paternity testing and forensics by ultra-deep next generation sequencing” is published in the renowned journal Forensic Science International: Genetics, Available online 8 November 2013, ISSN 1872-4973, http://dx.doi.org/10.1016/j.fsigen.2013.10.015.

1,000 Fish Transcriptome Project

The China National Genebank (CNGB) announces the official launch of the 1,000 Fish Transcriptome Project (Fish T1K). It marks the beginning of an amazing transcriptome study designed to unveil the mysteries of the origin, evolution, and diversification of the largest group of vertebrates.

The findings could enable scientists to pursue innovative approaches and strategies to address challenges in fish breeding, disease control and prevention, seafood safety and biodiversity conservation.

Read more at BGI news

Next Generation Sequencing in Lung Cancer

Dr. Benjamin Levy (Head of Thoracic Medical Oncology, Division of Hematology-Oncology, Beth Israel Medical Center, Continuum Cancer Centers of New York and Assistant Professor of Medicine, Albert Einstein College of Medicine) is talking with Selma Schimmel about next generation sequencing in lung cancer.

The interview was filmed at the American Society of Clinical Oncology Annual Meeting in Chicago 2013.

Do You Use RAD-Seq?

The last months we asked you if you are familiar with RAD-Seq, a new approach combining restriction site associated DNA marker genotyping (RAD) with next generation sequencing technology.

73 people did answer the questions. Nearly the half never heard of it.
For this reason we recommend some basic information about RAD-Seq.

rad-seq

 

 

Clinical Genomics Using NGS Approach

Video by Cambridge Healthtech about the impact of next generation sequencing on clinical genomics.

Nazneen Aziz of the College of American Pathologists and Konrad J. Karczewski of Stanford University are talking about analytical and bioinformatics standards, personal analysis, challenges and interpretation services.

Recently Launched Tools for Genomic Sequencing

Costs for DNA sequencing decreased tremendously the last years. New technologies and better methods cause that rapid drop in prices.
On the other hand, the field of sequencing is pushed forward with

  • methods to enrich nucleic acid samples,
  • kits that simplify library preparation from a variety of samples, and
  • services to assist the researcher with all aspects of sequencing.

Read more at the Nature Product Focus; the article was published in Nature 26 September 2013

Interview With Dr. Georg Gradl About Genome Sequencing

georg_gradl_lowBehind the scene…

You may know that Floragenex and Eurofins MWG Operon launched a new partnership to promote RAD sequencing.

As part of Floragenex’ series of interviews on genomic applications, they talked to our colleague and NGS expert Dr. Georg Gradl about his experiences with de novo genomic sequencing.

Check out the interview

Whole Genome Sequencing And You

What is a genome? What are the basics of how whole genome sequencing works? What are the potential benefits and risks? Or do you just want to learn a bit more about this technology?
Ths video was developed by researchers at Mount Sinai’s Department of Genetics and Genomic Sciences and Department of Emergency Medicine with funding from the Charles Bronfman Institute for Personalized Medicine.

Just take a cool drink and relax while watching the video.